Locomotivas - História

Locomotivas - História


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

© 2009 MultiEducator, Inc. Todos os direitos reservados
Relate problemas aqui.


Davenport Locomotive Works

A Davenport Locomotive Works era fabricante de pequenas locomotivas switcher, semelhantes às Whitcomb Locomotive Works, cuja história remonta aos primeiros anos do século XX.

Durante a era do vapor, a empresa construiu uma mistura de locomotivas de haste e engrenagens, especialmente os modelos de tanque das primeiras, eventualmente fazendo a transição para o diesel-elétrico a partir da década de 1920. Davenports se tornou popular com algumas ferrovias e especialmente no mercado industrial devido ao seu tamanho pequeno e custos relativamente baratos. & # Xa0

Curiosamente, o construtor também se espalhou pelo campo de manufatura em geral, construindo vários tipos de equipamentos industriais. Alguns de seus maiores motores diesel foram construídos durante a década de 1940, embora nunca parecesse ter tanto sucesso quanto o rival Whitcomb. Eventualmente, Davenport foi comprado pela Canadian Locomotive Company e sua fábrica foi fechada na década de 1950.

Pequenos trocadores, como este tipo de tanque de sela 0-4-0 construído para a Koenig Coal & Supply Company, foram a linha de locomotivas de maior sucesso de Davenport.

A história da Davenport Locomotive Works começa em 1901 com a fundação da W. W. Whitehead Company de Davenport, Iowa. Um ano depois, em 1902, o fabricante estava produzindo locomotivas a vapor pequenas e leves que eram comercializadas como um projeto de switcher para uso em todos os tipos de aplicações relacionadas.

Depois de apenas dois anos no negócio, a empresa foi renomeada, talvez mais apropriadamente, como Davenport Locomotive & Manufacturing Corporation ou simplesmente, Davenport Locomotive Works.

Curiosamente, embora Davenport e a Whitcomb Locomotive Works acabassem competindo no mercado de switchers a diesel, durante seus primeiros 25 anos no negócio não foi tanto assim, uma vez que os primeiros construíram modelos movidos a vapor e os últimos projetos a gasolina (mais tarde transição para diesel).

Outros pequenos fabricantes

Eles eram semelhantes, porém, de outra maneira. Durante o conflito da Primeira Guerra Mundial, as duas empresas fabricaram locomotivas confiáveis ​​e duráveis ​​de bitola estreita para uso nas ferrovias de trincheira francesas, transportando material e tropas para o esforço de guerra.

No final da década de 1920, os negócios de Davenport giravam em torno de trocadores de tanque de sela, como os minúsculos 0-4-0Ts e 0-6-0Ts (também conhecidos como "dinkies"), que se tornaram seus modelos mais populares durante seus primeiros anos no negócio.

Os compradores dessas locomotivas podem ser encontrados em todos os setores imagináveis, fora das ferrovias de transporte comum, de empresas de mineração (por exemplo, carvão, cobre ou minério) a plantações de açúcar e empresas de cimento. & # Xa0

Depois de 1910, o fabricante começou a se ramificar um pouco e produziu locomotivas ligeiramente maiores, incluindo 2-4-0s, 4-4-2 Atlantics, 2-6-0 Moguls e até 2-6-2 Prairies. & # xa0

Embora Whitcomb não fosse um concorrente inicial de Davenport, outros como H.K. Porter certamente estava, e está no negócio desde o fim da Guerra Civil. Desde então, Porter se tornou o principal fabricante de locomotivas leves e pequenas locomotivas a vapor, construindo milhares de unidades durante a Segunda Guerra Mundial.

Depois de um longo declínio após a Primeira Guerra Mundial, o Porter foi adquirido por Davenport em 1950. Em 1933, a Davenport Locomotive Works foi reorganizada como Davenport-Besler Corporation e fabricou seus primeiros comutadores a diesel em 1927 para a Northern Illinois Coal Company of Indiana. -ton design. & # xa0 & # xa0

À medida que a empresa começou a fazer a transição do vapor para o diesel, o interesse por suas locomotivas cresceu entre a indústria ferroviária geral.

Embora o advento do diesel-elétrico nas principais aplicações de linha não tenha pegado até a introdução em 1939 do FT da Electro-Motive, construtores como Baldwin e a American Locomotive Company (Alco) vinham construindo pequenos switchers desde os primeiros anos daquela década. & # xa0

As ferrovias estavam começando a gostar de diesel para uso em switcher e trabalhos leves durante este tempo devido à economia que proporcionavam. & # Xa0 & # xa0Para mais informações sobre as primeiras locomotivas a vapor de & # xa0Davenport, clique aqui.

Por assim dizer, o modelo mais popular de Davenport parecia ser o tipo de 44 toneladas, que a General Electric também descobriu ser de alta demanda com um switcher construído com o mesmo peso.

A empresa ainda estava obtendo algum sucesso no mercado de vapor leve. Durante a Segunda Guerra Mundial, ele assinou um contrato com o governo para construir um USATC (United States Army Transportation Corps) S100 Classe 0-6-0 para uso na campanha africana e, mais tarde, na Europa, conforme a guerra progredisse.

Essas locomotivas confiáveis ​​também foram construídas por Porter e Vulcan Iron Works com cerca de 400 fabricadas para o esforço de guerra. Mais uma vez, o equipamento de Davenport teve um desempenho tão bom que o Exército dos EUA concedeu à empresa seu Prêmio de Produção "E" por Excelência em Produção de Guerra. & # Xa0

Nem todos os switchers de Davenport eram saddletanks, como este pequeno 0-4-0 de 38 toneladas fabricado em 1909.

Para obter uma seleção de fotos dos modelos & # xa0diesel de Davenport, clique aqui. & # Xa0 Após a guerra, o construtor se concentrou quase exclusivamente nas chaves de diesel. Seu maior acabou sendo um dos últimos, o modelo de 112 toneladas, um projeto de cabine central que parecia um grande tijolo em caminhões B-B.

Em maio de 1955 Davenport-Besler foi comprada pela Canadian Locomotive Company e um ano depois, em 17 de maio de 1956, sua fábrica foi paralisada encerrando mais de 50 anos de produção de locomotivas.

Apesar do fechamento, as locomotivas Davenport, por serem pequenas e leves, tornaram-se excelentes para restaurações de linhas turísticas e museus ferroviários devido ao seu custo muito inferior em comparação com modelos maiores. Como resultado, vários ainda podem estar em uso em todo o país.


Um ano depois, em agosto de 1830, o Baltimore & Ohio de três anos realizou testes do & # xa0Tom Thumb , o trabalho de Peter Cooper. & # xa0 Um mês após este evento, a South Carolina Canal & Railroad Company (SCC & RR) testou seu Melhor amigo de Charleston.

O SCC & RR também seria lembrado como o primeiro a transportar um trem de receita com um design de construção americana quando seu & # xa0Melhor amigo de Charleston, um produto da West Point Foundry em Nova York, tinha clientes pagantes em 25 de dezembro de 1830.

A ferrovia foi fretada em 24 de abril de 1827 para solidificar a posição de Baltimore como um dos portos importantes da América e fornecer concorrência contra o Canal Erie de Nova York. & # xa0

À medida que o sucesso dessas operações, e de outras, crescia, a mania das ferrovias atingiu a nação. & # xa0A nova forma de transporte pode operar em todos os tipos de clima e transportar pessoas e mercadorias a velocidades nunca antes vistas. & # xa0

Primeiras ferrovias notáveis

Em 1840, os estados a leste do rio Mississippi ostentavam mais de 2.800 milhas de trilhos e uma década depois esse número havia mais do que triplicado para mais de 9.000. Durante esses primeiros anos, grande parte da pista ainda estava desconectada e em grande parte concentrada no Nordeste. & # xa0

Havia também uma variedade de medidores diferentes em serviço, variando de 4 pés 8 1/2 polegadas (que mais tarde se tornou o padrão) a seis pés. & # xa0

Infelizmente, viajar podia ser uma proposta complicada, pois as ferrovias não viam necessidade de desenvolver operações seguras. & # xa0Mesmo após o desenvolvimento do moderno trilho "T", o antigo trilho de cinta de ferro ainda era usado por muitos anos. & # xa0 & # xa0

Uma foto da empresa de Santa Fé apresentando uma bela linha de FT's sentados do lado de fora das lojas em Barstow, Califórnia, por volta do final dos anos 1940. Coleção do autor.

Isso levou a casos de "cabeças de cobra" mortais, onde tiras de ferro se soltaram de suas pranchas de madeira e rasgaram a estrutura dos carros, ferindo ou matando passageiros. & # xa0Além disso, os próprios carros não foram reforçados para suportar melhor a carnificina durante descarrilamentos. & # xa0

As ferrovias usaram seu poder para influenciar políticos e evitar melhorias na infraestrutura e na segurança, como engates e freios a ar. & # xa0 Essas coisas custam apenas dinheiro. & # xa0

Em sua ganância, eles até se recusaram a trocar mercadorias uns com os outros. & # xa0Esta atitude arrogante acabou levando a uma supervisão regulatória extrema. & # xa0 & # xa0

Quem inventou a ferrovia?

Quem inventou a ferrovia? & # Xa0 Conforme mencionado em outro lugar neste artigo, a primeira ferrovia fretada nos Estados Unidos foi a & # xa0New Jersey Railroad Company de 1815, enquanto a Granite Railway foi a primeira realmente colocada em serviço em 1826. & # Xa0

No entanto, as raízes das ferrovias podem ser rastreadas séculos antes do nascimento da encarnação moderna durante o século 19. & # Xa0 Como acontece com muitas de nossas tecnologias de transporte contemporâneas, a ferrovia surgiu gradualmente ao longo do tempo. & # Xa0

Muitos indivíduos diferentes são reconhecidos por desenvolver uma série de dispositivos diferentes que encontraram seu caminho para o que agora seria descrito como a ferrovia moderna da década de 1820. & # xa0

De acordo com o livro do historiador Mike Del Vecchio, "Railroads Across America, "a primeira operação semelhante a uma ferrovia foi inaugurada na Inglaterra em 1630, que usava trilhos de madeira, com travessas de madeira (ou" dormentes ") como suporte lateral, para transportar carvão.

A primeira implementação conhecida de trilhos de ferro ocorreu em Whitehaven, Cumberland em 1740, seguida pela invenção da roda flangeada por William Jessop (Loughborough, Leicestershire) em 1789. & # xa0 A máquina a vapor é atribuída a Thomas Newcomen, que recebeu uma patente por seu projeto em 1705. & # xa0

Mais tarde, foi melhorado por James Watt em 1769, que percebeu que a expansão do vapor era muito mais poderosa e eficiente do que a versão de condensação de Newcomen. & # Xa0 Ele primeiro empregou o motor em barcos a vapor, que mais tarde chegaram aos Estados Unidos. & # Xa0

George Stephenson é considerado o inventor da ferrovia moderna quando o Stockton & Darlington foi colocado em serviço em 1825.

Antes que o Coronel John Stevens testasse seu "Vagão a Vapor" em 1826, a primeira patente para uma locomotiva a vapor foi creditada aos ingleses Richard Trevithick e Andrew Vivian em 1802. & # Xa0

Entrou em serviço em 1804 ao longo da Ferrovia Merthyr-Tydfil em South Whales, onde puxou cargas de minério de ferro ao longo de uma linha de bonde. & # Xa0 & # xa0Duas décadas se passariam antes que a primeira versão moderna aparecesse, o trabalho de George Stephenson. & # Xa0

Embora muitas vezes esquecido, o primeiro dispositivo que poderia ser descrito como uma "locomotiva" foi obra de um francês, Nicolas-Joseph Cugnot, em 1769. & # Xa0 Era movido a vapor, mas não corria ao longo de uma via fixa. & # xa0

Hoje, esta peça histórica de engenharia ainda sobrevive, hospedada e em exibição no Musée des Arts et Métiers em Paris. & # Xa0 Todas as locomotivas e automóveis modernos podem traçar sua herança até esta máquina. & # Xa0

Mais uma vez, a Grã-Bretanha ganhou o reconhecimento por colocar a primeira ferrovia contemporânea em operação quando a Stockton & Darlington Railway abriu formalmente em 27 de setembro de 1825. & # Xa0

O Sr. George Stephenson, um conhecido construtor das primeiras locomotivas a vapor, também esteve fortemente envolvido neste projeto: ele inspecionou a rota, mediu os trilhos para 4 pés e 8 polegadas (apenas 1/2 polegada mais estreito da largura que mais tarde seria reconhecido mundialmente como bitola padrão) e, é claro, forneceu as locomotivas. & # xa0

Seu pequeno 0-4-0, chamado & # xa0Ativo (posteriormente renomeado & # xa0Locomoção No. 1) foi colocado em serviço naquele dia, ganhando o reconhecimento de Stephenson como criador da ferrovia moderna. & # xa0 Seus projetos também encontrariam seu caminho nas primeiras ferrovias dos EUA até que os construtores americanos se consolidassem. & # xa0

Por suas muitas vantagens, alguns em público simplesmente não gostavam do cavalo de ferro. & # xa0Como John Stover aponta em seu livro, "O Atlas histórico de Routledge das ferrovias americanas, "um conselho escolar em Ohio os descreveu como um" dispositivo do diabo ", enquanto aqueles que supervisionavam a rodovia de Massachusetts os chamaram de" assassinos cruéis em rodovias "e" desprezadores de cavalos ". & # xa0

Houve até mesmo uma alegação de que a viagem de trem causaria uma "concussão cerebral". & # xa0 Apesar da má-conduta corporativa e do cansaço do público, a eficiência e a velocidade dos trens oferecidos simplesmente não podiam ser contestadas. & # xa0 & # xa0

Chicago Great Western F3A # 115-A tem frete # 43 ao longo da linha principal em Kenyon, Minnesota (aproximadamente 50 milhas ao sul das Cidades Gêmeas) em 31 de agosto de 1962. Foto de Roger Puta.

Durante a Guerra Civil, as ferrovias mais uma vez provaram seu valor ao transportar rapidamente homens e materiais para as linhas de frente a velocidades que antes não eram possíveis. & # Xa0 & # xa0

O Norte efetivamente aproveitou essa vantagem, como o historiador John P. Hankey aponta em seu artigo, "A guerra da ferrovia: como a estrada de ferro mudou a guerra civil americana, "da edição de março de 2011 da Trains Magazine. & # xa0

Sua capacidade de fazer isso foi predominantemente o motivo de ter vencido a guerra. & # xa0Antes do fim das hostilidades, já estavam em curso esforços para ligar todo o continente por via férrea. & # xa0

Com a criação do Pacific Railway Act, sancionado pelo presidente Abraham Lincoln em 1º de julho de 1862, autorizando a construção da Ferrovia Transcontinental. & # xa0

A nova legislação formou a Union Pacific Railroad para construir a oeste a partir do rio Missouri em Omaha, Nebraska, enquanto o Pacífico Central avançou a leste de Sacramento, Califórnia. & # xa0Ambas as empresas receberam grandes extensões de terra para completar suas respectivas seções. & # xa0

Cidade pequena da América. Santa Fe F7A # 335 segue para o sul com um trem de pulverização de ervas daninhas de manutenção de via (MOW) que passa pelo pequeno vilarejo de Glen Flora, Texas, no agora abandonado Cane Belt Branch em junho de 1976. Foto de Gary Morris .

Após vários anos de trabalho árduo, especialmente para o Pacífico Central, os dois se encontraram em Promontory Point, Utah, durante uma cerimônia formal realizada em 10 de maio de 1869. & # xa0

Sem a Pacific Railway Act, a história de nosso país provavelmente seria muito diferente, pois as viagens ferroviárias abriram o oeste para novas oportunidades econômicas. & # xa0

Após a conclusão da Ferrovia Transcontinental, a indústria explodiu na década de 1890, havia mais de 163.000 milhas em operação. & # xa0

Por fim, quatro ferrovias principais estabeleceram linhas diretas do meio-oeste à costa oeste, incluindo Great Northern, Northern Pacific, Santa Fe e Chicago, Milwaukee, St. Paul e Pacific (Milwaukee Road), enquanto outras trabalharam juntas para ligar os dois pontos. & # xa0 e # xa0

Conrail GG-1 # 4800 ("Old Rivets", o GG-1 original), em sua vibrante libré do Bicentenário, parou em Leaman Place, Pensilvânia, no trevo com a Estrada de Ferro de Estrasburgo. Foto de Jerry Custer.

A era também viu muitos outros avanços, como observa o falecido historiador Jim Boyd em seu livro, "O trem de carga americano. "& # xa0Após vários anos de desconfiança, uma bitola padrão de 4 pés, 8 1/2 polegadas foi adotada durante a década de 1880, juntamente com o desenvolvimento do acoplador automático e do freio a ar. & # xa0

Todas as três iniciativas provaram ser revolucionárias, permitindo maior eficiência e operações muito mais seguras. & # xa0A partir do final do século 19, embora as ferrovias da década de 1920 tenham desfrutado de seu maior domínio e lucratividade em particular, foi o ano de 1916, que teve um pico de milhagem em mais de 254.000 e as ferrovias transportaram praticamente 100% de todo o tráfego interestadual. & # xa0

Milhagem ferroviária ao longo dos anos

Abaixo está uma linha do tempo da milhagem da ferrovia ao longo dos anos: & # xa0

Um Baltimore & Ohio 4-6-2 dirige um trem de passageiros local enquanto desce suavemente na estação de Williamstown, West Virginia, em algum momento da década de 1940. O serviço de passageiros na subdivisão do rio Ohio sobreviveu até meados da década de 1950. Coleção do autor.

1916: 254.037 milhas (Peak Mileage)

Uma Ohio River Rail Road 4-6-0 conduz um trem de trabalho perto de Parkersburg, West Virginia, durante a construção da linha por volta de 1884. Coleção do autor.

Fontes: & # xa0 "O Atlas histórico de Routledge das ferrovias americanas, "por John F. Stover. & # xa0New York: Routledge, 1999. & # xa0Federal Railroad Administration's"Resumo das necessidades de capital ferroviário de classe II e classe III e fonte de financiamento"Relatório (outubro de 2014)

Penn Central U25Bs # 2685 e # 2674 conduzem um frete Erie Lackawanna para o sul através de North Tonawanda, Nova York em 5 de agosto de 1973. Foto de Doug Kroll.

Durante a década de 1930, a era do streamliner atingiu o país, tudo em uma tentativa de levar os clientes de volta aos trilhos. & # xa0Estas novas máquinas rápidas e elegantes proporcionaram uma nova cor de vantagens e modernidade nunca antes vista. & # xa0

O domínio do setor de transporte terminou após a Segunda Guerra Mundial, enquanto um longo declínio se seguiu a partir daí. & # xa0Em resposta, o chamado movimento de megafusões foi lançado na década de 1950 em uma tentativa de cortar custos por meio da consolidação.

Na época, a mudança foi apenas parcialmente bem-sucedida, já que as ferrovias entraram em desespero na década de 1970.

O observador comum podia ver isso por si mesmo, pois os trilhos ficaram sufocados com ervas daninhas enquanto os trens se dilapidavam. & # xa0Para transportadoras como a Rock Island e a Penn Central, ambas à beira do desligamento total, equipamentos sujos e mal operacionais não eram incomuns. & # xa0

O que aconteceu na década de 1970 tem muitas causas, embora possa ser indiscutivelmente atribuída a poderes ampliados atribuídos à Comissão de Comércio Interestadual após a aprovação da Lei Elkins (1903) e, em particular, a Lei Hepburn (1906) e a Lei Mann-Elkins (1910). & # xa0

As duas últimas ações legislativas deram à ICC autoridade para definir as taxas de frete e forçar as ferrovias a explicar por que qualquer alteração nas taxas deveria ser implementada. & # Xa0 & # xa0

Um conjunto A-B-A-B-B de vagões cobertos Santa Fé, liderado pelo F7A # 301, puxa o chefe de San Francisco para o oeste durante uma de suas corridas finais por Hercules, Califórnia, em abril de 1971. A Amtrak estava a apenas alguns dias de distância. Foto de Drew Jacksich.

Foi um processo longo e demorado que raramente teve sucesso. & # xa0A supervisão federal expandida foi criada para limitar o poder das ferrovias, já que muitos executivos se tornaram arrogantes e esquecidos de seu propósito final: servir ao interesse público. & # xa0

Infelizmente, a legislação foi longe demais e colocou uma carga cada vez maior sobre a indústria no período pós-Segunda Guerra Mundial, altura em que eles não detinham mais o monopólio de transporte. & # xa0

Durante a década de 1970, várias empresas famosas faliram, agora chamadas carinhosamente de "bandeiras caídas". & # xa0A década também viu o colapso do serviço ferroviário do nordeste após a falência da Penn Central em 1970. & # xa0

Seu fracasso levou a outros, à medida que as ferrovias vizinhas entraram com pedido de reorganização. O que finalmente saiu da confusão foi a Consolidated Rail Corporation. & # xa0

Uma corporação financiada pelo governo federal para restaurar o serviço, a Conrail começou em 1º de abril de 1976. & # xa0 Alguns anos antes, também parcialmente em resposta à queda do PC, nasceu outra ferrovia patrocinada pelo governo, a National Railroad Passenger Corporation (Amtrak). & # xa0Ele foi lançado em 1o de maio de 1971 e dispensou muitos de seus serviços de passageiros que custavam dinheiro.

Antes que a Penn Central fosse incorporada à Conrail, o administrador da ferrovia federal John Ingram destacou a dificuldade de qualquer ferrovia abandonar um ramal não lucrativo. & # xa0Enquanto visitava os trilhos da península de Delmarva da ex-ferrovia da Pensilvânia, ele disse isso durante um discurso destacando a situação do PC:

"Deixe-me contar uma pequena história sobre o abandono de ramais não lucrativos. & # xa0Um fim de semana no verão passado, eu estava indo para Rehoboth Beach, Delaware, para aproveitar o Oceano Atlântico. & # xa0

Você precisa atravessar a costa leste de Maryland para chegar lá, e pedi à minha equipe para listar alguns dos ramais da costa leste que a Penn Central deseja abandonar. & # Xa0

Eu queria ver por mim mesmo - talvez contar os vagões de carga em ramais para ver se realmente havia falta de negócios. & # xa0Eu dirigi até a área, verifiquei meus mapas e simplesmente & # xa0não consegui encontrar& # xa0 qualquer coisa que se pareça com uma ferrovia. & # xa0

Na segunda-feira de manhã, gritei com minha equipe por ter me enviado em uma perseguição de ganso selvagem, mas eles se mantiveram firmes. & # xa0Então voltamos - desta vez com mapas de propriedades e um topógrafo. & # xa0

Encontramos o ramal, certo. & # xa0Em um lugar, estava diretamente sob um ferro-velho cheio de carros destruídos. & # xa0Em outro ponto, o departamento de rodovias cobriu os trilhos com pelo menos 20 centímetros de pavimentação. & # xa0

E logo na saída da estrada encontramos uma árvore de quinze centímetros de largura crescendo entre os trilhos. & # xa0Essa linha foi completamente esquecida, mas homens adultos argumentavam perante o TPI que aquele trecho de trilhos era vital para a economia da Nação!"

Um cartão postal do trem # 1 do Pacífico Norte, o "Mainstreeter" transcontinental para o oeste (Chicago - Seattle), em Fargo, Dakota do Norte, em uma cena que provavelmente data da década de 1950. Coleção do autor.

As ferrovias de hoje provavelmente seriam muito diferentes se não fosse pelo Staggers Rail Act de 1980, proposto por Harley Staggers da West Virginia. & # xa0Antes dessa legislação, houve discussões sobre a simples nacionalização de todo o setor, uma proposta assustadora que tanto os executivos quanto os governantes desejavam evitar. & # xa0

O projeto trouxe um grande nível de desregulamentação, já que as ferrovias recuperaram seu equilíbrio graças à liberdade renovada na definição de tarifas de frete e ao abandono de ferrovias não lucrativas.

A década de 1980 viu uma lenta recuperação, pois a Conrail registrou seus primeiros lucros no final de 1981 e o movimento de megafusões continuou, criando a atual Norfolk Southern Railway e a CSX Transportation naquela década. eu

Além disso, a Union Pacific comprou o Chicago & North Western, enquanto a Norfolk Southern e a CSX engoliram a Conrail em 1999. & # xa0O crescimento do frete continuou no século XXI. & # xa0Nós também vimos um renascimento nas viagens ferroviárias, à medida que as pessoas procuram escapar do engarrafamento das rodovias.


3. Os trens ajudaram o Norte a vencer a Guerra Civil Americana.

Ao longo da guerra, as ferrovias possibilitaram o transporte rápido de um grande número de soldados e artilharia pesada por longas distâncias. Um dos usos mais significativos dos trens veio após a Batalha de Chickamauga em setembro de 1863, quando Abraham Lincoln foi capaz de enviar 20.000 tropas de reposição muito necessárias a mais de 1.200 milhas de Washington, DC para a Geórgia (em apenas 11 dias) para fortalecer as forças da União e # x2014o movimento de tropas mais longo e rápido do século XIX. O controle da ferrovia em uma região era crucial para o sucesso militar, e as ferrovias costumavam ser alvos de ataques militares com o objetivo de cortar o abastecimento do inimigo. O general do sindicato William Tecumseh Sherman era particularmente adepto da arte da sabotagem ferroviária. Durante seu infame & # x201CMarch & # x201D pela Geórgia e as Carolinas, seus homens destruíram milhares de quilômetros de trilhos confederados, deixando pilhas de ferro torcido e aquecido que os sulistas exaustivamente chamam de gravatas & # x201CSherman & # x2019s. & # X201D


BIBLIOGRAFIA

Bianculli, Anthony J. Trens e tecnologia: a estrada de ferro americana no século XIX. Newark: University of Delaware Press, 2001.

Bohn, Dave e Rodolfo Petschek. Kinsey, fotógrafo: A Half Century of Negatives, de Darius e Tabitha May Kinsey. Vol. 3 Os retratos da locomotiva. San Francisco: Chronicle Books, 1984.

Bruce, Alfred W. A locomotiva a vapor na América: seu desenvolvimento no século XX. Nova York: Norton, 1952.

Collias, Joe G. O Último do Steam: Um Esguicho Esplendor Gráfico dos Anos Minguantes da Ferrovia a Vapor nos Estados Unidos. Berkeley: Howell-North, 1960.

Reutter, Mark, ed. Railroad History, Millennium Special: The Diesel Revolution. Westford, Mass .: Railway and Locomotive Historical Society, 2000.

White, John H. American Locomotives: An Engineering History, 1830–1880. Baltimore: Johns Hopkins University Press, 1968 1997.


Introdução de locomotivas a vapor

A primeira locomotiva a vapor ferroviária foi introduzida por Richard Trevithick em 1804. Ele foi o primeiro engenheiro a construir uma máquina a vapor estacionária de alta pressão bem-sucedida em 1799. Ele seguiu isso com um vagão a vapor rodoviário em 1801. Embora a experiência tenha fracassado , em 1804 ele construiu uma bem-sucedida locomotiva a vapor sem nome para a bitola estreita Merthyr Tramroad em South Wales (às vezes incorretamente chamada de Penydarren Tramroad). Em meio ao grande interesse do público, em 1804 transportou com sucesso 10 toneladas de ferro, 5 vagões e 70 homens por uma distância de 9,75 milhas (15,69 km) de Penydarren a Abercynon em 4 horas e 5 minutos, uma velocidade média de quase 5 mph ( 8,0 km / h). Esta locomotiva provou que a tração a vapor era uma proposição viável, embora o uso da locomotiva tenha sido rapidamente abandonado por ser muito pesada para a pista de placas primitiva. Uma segunda locomotiva, construída para a mina de carvão Wylam, também quebrou a linha. Trevithick construiu outra locomotiva em 1808, Me Pegue Quem Pode, que funcionou em uma ferrovia de demonstração temporária em Bloomsbury, Londres. Membros do público podiam andar atrás em velocidades de até 19 km / h (12 mph). No entanto, novamente quebrou os trilhos e Trevithick foi forçado a abandonar a demonstração depois de apenas dois meses.

A primeira locomotiva a vapor com sucesso comercial foi o cilindro duplo Salamanca, projetado por em 1812 por Matthew Murray usando John Blenkinsop & # 8217s design patenteado para propulsão de cremalheira para a ferrovia de Middleton. Blenkinsop acreditava que uma locomotiva leve o suficiente para se mover com sua própria força seria muito leve para gerar adesão suficiente, então ele projetou uma ferrovia de cremalheira e pinhão para a linha. Isso apesar do fato de Trevithick ter demonstrado locomotivas de adesão bem-sucedidas uma década antes. A única cremalheira corria para fora dos trilhos de bitola estreita do trilho e era engatada por uma roda dentada no lado esquerdo da locomotiva. A roda dentada era acionada por dois cilindros embutidos na parte superior da caldeira de combustão central. Quatro dessas locomotivas foram construídas para a ferrovia e funcionaram até o início da década de 1830.

Blenkinsop & # 8217s cremalheira locomotiva Salamanca, Middleton para Leeds (Reino Unido) coal tramway, 1812, autor desconhecido, riginalmente publicado na The Mechanic & # 8217s Magazine, 1829.

Salamanca foi a primeira locomotiva a vapor de sucesso comercial, construída em 1812.


Outros projetos de locomotivas

As locomotivas começaram a usar motores como usinas de energia desde o início do século 20, quando as versões a gasolina foram introduzidas pela primeira vez. juntou-se à American Locomotive Company (Alco). & # xa0 O pequeno demonstrador de boxcab percorreu várias ferrovias listadas como # 8835 e atraiu muito interesse. & # xa0 No entanto, este exemplo original não vendeu. & # xa0 Em 1925 todas as três empresas começaram a comercializar modelos de 60 e 100 toneladas para venda, com o primeiro adquirido pela Ferrovia Central de Nova Jersey, # 1000. & # xa0. No entanto, neste momento, a maioria das estradas não estava convencida de que o diesel poderia ser desenvolvido como energia da linha principal. & # xa0 Ainda assim, os comutadores para uso em trabalhos leves atraíram maior interesse e aceitação. & # xa0 & # xa0

A pequena fábrica de 25 toneladas da Alger-Sullivan Lumber Company, nº 1 (General Electric), é ofuscada pelos carros com lascas de madeira que carrega na fábrica em Century, Flórida, em 1973. Foto de Warren Calloway.

A nova Electro-Motive Corporation (EMC) começou a comercializar sua própria linha de switchers em 1936, seguida pela General Electric alguns anos depois e pela Alco em 1940. & # xa0 For EMC, que mais tarde se tornou a Divisão Electro-Motive da General Motor (EMD ), não era novo no conceito de locomotivas movidas a diesel. & # xa0 & # xa0 & # xa0 O novo construtor havia trabalhado com a Chicago, Burlington & Quincy e Budd Company para ajudar a desenvolver a Pioneer Zephyr trem simplificado que impressionou o público em 26 de maio de 1934. & # xa0 Era movido por um motor principal de 660 cavalos de potência construído pela divisão subsidiária da EMC, a Winton Motor Carriage Company. & # xa0 Os primeiros modelos de switcher do fabricante foram montados em 1938 e carregava designações como "SC", "NW" e "SW" -tonner, etc. & # xa0

Finalmente, o Alco ofereceu suas próprias variantes, conhecidas como a série "S", desde o S1 de 1940 até o S6 / T6 do final dos anos 1950/60. & # Xa0 & # xa0 (Por um tempo, Fairbanks Morse também catalogou um par de switchers , o H10-44 e o H12-44 construídos entre 1944 e 1961. & # xa0 Eles venderam muito bem, apesar da incapacidade da FM de competir seriamente no mercado.) & # xa0 Para a GE, viu um interesse moderado em sua linha de switcher ao longo dos anos vendendo suas versões para uma variedade de compradores, de ferrovias a indústrias privadas. & # xa0 Curiosamente, enquanto a Alco lutava para se manter competitiva no mercado de diesel na década de 1960, seus switchers eram muito apreciados, já que a empresa produzia milhares, sendo o mais bem-sucedido o S2 vendendo 1.500 exemplos. & # Xa0 Durante a década de 1940, chegou a liderar o mercado, bem como com o primeiro road-switcher, o RS1 de 1941. & # Xa0

O switcher nº 105 da planta Electro-Motive foi visto aqui em McCook, Illinois, em 6 de outubro de 1962. Foto de Roger Puta. De acordo com Marty Bernard: "# 105 era um DH2, um SW8 modificado como um diesel-hidráulico para fins de demonstração. Mais tarde, e nesta foto, ele foi convertido para um diesel-elétrico padrão com motores de tração e sem eixos de transmissão, servindo como um switcher de planta EMD. "

Infelizmente, com o passar dos anos, o líder da indústria EMD assumiu este cobiçado lugar. & # Xa0 Durante o final dos anos 1930, a nova divisão de locomotivas da GM mudou para seu próprio plano em La Grange, Illinois, quando começou a lançar novos modelos movidos pelo novo modelo dos pais 567 motor principal. & # Xa0 Os primeiros projetos foram o NW2 e o SW1 de 1939. & # Xa0 Assim como com as unidades de cabine FT populares, esses switchers começaram a vender muito bem, com quase 2.000 exemplares vendidos apenas entre essas duas variantes. & # Xa0 Em nos anos seguintes, a EMD continuou a lançar modelos populares de switcher, como as séries SW7, SW9, SW1200, SW1500 e MP15. & # xa0 Eles foram construídos durante a década de 1980 e naquela época havia apenas dois construtores restantes no mercado. & # xa0 Naquela época, o interesse dos usuários havia diminuído, com tantos em serviço e um alto nível de confiabilidade.

Warwick Railway 50 tonner # 104 (construído pela Atlas Car & Manufacturing Company) é visto aqui com sua tripulação ligeira em Warwick, Rhode Island durante janeiro de 1977. Foto de Warren Calloway.

Mesmo hoje, décadas desde que foram superados, ainda é possível encontrar os primeiros SW1s e NW2s em serviço regular. & # Xa0 Além disso, a grande classe Is ainda lista vários modelos MP15 e SW1500s para manutenção de quintal. & # Xa0 Nos últimos anos, surgiram algumas novidades switchers construídos, embora não pelos principais fabricantes na década de 2000, a RailPower (agora uma divisão da RJ Corman) lançou uma linha de grupos geradores. & # xa0 Também houve vários switchers reconstruídos em grupos geradores ou revisados ​​para melhorar o desempenho. & # xa0 Parece que, embora não possamos ver novos modelos de switcher catalogados tão cedo, os exemplos clássicos em serviço há anos ainda estarão disponíveis para muitos mais. & # xa0Para ler mais sobre switchers de vários construtores, visite o & # xa0Locomotivas Dieselseção & # xa0 do site, que pode ser alcançada a partir do & # xa0topo desta página.


Locomotivas Famosas

Em 1980, John H. White, Jr. e seus colegas do Smithsonian Institution ponderaram como marcar o 150º aniversário da locomotiva "John Bull". After all, it did spend 35 years in rough railroad service, and the best way to learn how machinery actually worked is to operate it. There were risks, but much to be learned in the process.

The firm of Robert Stephenson in England constructed the locomotive for the Camden and Amboy Railroad and delivered it in August of 1831. By 1866, the "John Bull" was out of service-but the railroad recognized its historic importance and preserved it intact. After the Pennsylvania Railroad absorbed the C&A in 1871, it exhibited the "John Bull" at various expositions and in 1885 presented the locomotive to the Smithsonian Institution.

Almost a hundred years later, Smithsonian staff and volunteers completely disassembled and inspected the ancient engine. After many tests and lots of tender care, the "John Bull" steamed again, hauling its companion passenger car over branch lines near Washington, D.C. Over a period of several weeks in the fall of 1981, the locomotive taught its keepers more about early steam power than any textbook possibly could. It looked, smelled, sounded, and behaved exactly like the thousands of steam locomotives that followed it -- to the delight of curators and rail fans alike.

Most of the 75,000 streetcars running around the United States in the 1920s were old and tired, and it seemed the way to revitalize the industry was to design a new type of streetcar-one that would replace the boxy and rattling old traditional streetcars and bring the image of modern comfort and design to the street railroad industry.

A planning group formed late in 1929 to study the problem. Representatives of railroads and the manufacturing industry collaborated to evaluate everything about the streetcar, from controllers and brakes to the shape of seats and exterior appearance. Their new design, named the PCC (after the President's Conference Committee) Car, was modern in appearance and featured innovations that made it lighter, smoother riding, more comfortable, and more durable than earlier cars.

The first was placed in service in Brooklyn during early 1936, and lines in Baltimore and Chicago soon placed orders. Almost 5,000 PCC cars were built, most of them ending up in perhaps 30 cities across North America.

The PCC did not save the street railroad industry, but it helped slow the inevitable decline. The PCC car's durability and relatively low maintenance cost allowed several transit operations to survive during the postwar period, and these venerable streetcars can still be seen serving transit riders in Philadelphia, Boston, Pittsburgh, Newark, and Toronto.

Most famous of the motor trains was the Zephyr, named after the Greek god of the west wind. It was a complete, compact, self-propelled three-car train, clad in gleaming stainless steel and looking every bit like the train of the future.

Christened in April of 1934, the diminutive train toured the East and Midwest while plans were laid for a spectacular promotional stunt. The stubby little Zephyr was to make the 1,015-mile trip from Denver to Chicago in a dawn-to-dusk dash of 14 hours-12 hours under the fastest regular service. The trip got off 65 minutes late on May 26, 1934. The shovel-nose streamliner reached a top speed of 112 miles per hour as it hurtled across the Plains. Its progress, closely followed by the press, was announced to visitors at Chicago's Century of Progress Exposition.

The train broke a timing tape in Chicago at 7:10 p.m.-13 hours, 4 minutes, and 58 seconds after it left Denver-and rolled onto the stage at the climax of the "Wings of a Century" pageant at the exposition. There, with Lake Michigan as a backdrop, the Zephyr signaled the end of the Steam Age, claiming the future for the diesel-electric streamline train.

In January of 1968, the Atchison, Topeka & Santa Fe caught the attention of the trade press (and shippers) with the inauguration of the Super C-a 40-hour piggyback and container train on the 2,200-mile route between Chicago and Los Angeles. This six-days-a-week service was as fast as the Super Chief-hence the name average speed was more than 55 miles an hour, topping out at 79.

Trains were light. No more than about 20 cars were projected, though in reality they would often run with as few as two or three. As originally conceived, the trains were a straight shot-no classification, no pick-up or drop-off. There were, however, 17 crew changes en route, an indication of the antediluvian nature of the work rules at that time.

Naturally, the Super C was a premium-price service, costing about double the usual COFC/TOFC rates, in fact. Because of the high cost, the train had some difficulty attracting a steady clientele. The operation's purity was further compromised by the addition of a Kansas City pickup, as well as combinations with trains west of Barstow, California.

At the same time, Northern Pacific was fielding a similar service on the 1,875-mile Seattle-Minneapolis Tokyo Express, which averaged 51 miles per hour and was thus faster than the North Coast Limited, NP's premier passenger train. Neither this train nor the Super C would linger for long, but they proved how quickly inter-modal freight could move by rail.

The CZ's death was slow, painful, and public. Western Pacific, the weakest of its three operators, was the first to go to the I.C.C. to ask out-in September of 1966. The Commission was on the horns of a dilemma, since the line was clearly demonstrating significant losses, yet the train was running full in summer, with a year-round load factor of 78 percent.

Furthermore, a survey showed a 95 percent approval rating by passengers. Although Rio Grande claimed losses, it still stood firm with pro-passenger Burlington in supporting the train. The I.C.C. deliberated for five months, then ordered Western Pacific to run the train for another year.

WP was back, hat in hand, as that term expired, only to be rebuffed again by the I.C.C., which felt that the railroad was only half-heartedly trying to improve the train's faltering balance sheet.

Then, in May of 1969, the Rio Grande asked to discontinue its portion of the run, citing annual losses of almost $2 million. By now, passengers were finally beginning to desert the CZ, disillusioned by poor timekeeping, deteriorating equipment, and years of discontinuation notices. The end came in February of 1970, when the I.C.C. ruled that the WP could end its segment, with Rio Grande dropping back to tri-weekly runs, connecting at Salt Lake City with Southern Pacific service to San Francisco.

The California Zephyr made its last run just over a month later.

The Delaware Hudson Adirondack

As Amtrak went about saving the American passenger train in the 1970s, the corporation instituted significant changes. One that was distinctly two-edged, however, was the standardization of richly varied ancestors into look-alike trains.

One colorful exception was the Adirondack, a day train between New York and Montreal that was funded in part by the State of New York under a provision of the Amtrak Act that allowed states to mandate service by funding a percentage of the cost-two-thirds originally, later one-half.

The Delaware & Hudson was a willing operator of this train between Albany and Montreal-a wonderfully scenic ride, much of it along the shore of Lake Champlain-but on its terms, which were that the equipment used would be its own, refurbished at state expense and painted in a fetching blue, yellow, and gray. The locomotives would be four distinctive Alco PAs, handsome locomotives that D&H had purchased from Santa Fe in 1967 for service on the Laurentian and Montreal Limited.

Because D&H under Carl B. Sterzing, its feisty young president, wanted its identity front and center, Sterzing and Amtrak struck sparks virtually from the time of the train's inauguration on August 5, 1974.

After the leased CP domes were returned, Amtrak provided dome coaches in their stead, which D&H painted in its own colors, outraging Amtrak officials. Amtrak's blue and red promptly returned, and the passenger corporation played its trump card in this identity battle in 1977 by bumping the D&H equipment entirely with Turboliner trainsets.

The United States never embraced railroad electrification in a big way. Distances were generally too great and traffic densities too low for electrification's expensive infrastructure to make sense. The Pennsylvania Railroad's multi-track main line between New York and Washington was a dramatic exception.

By 1934, Pennsylvania had developed the locomotive that would become the operation's mainstay for almost half a century-the mighty GG1. The prototype, No. 4800, was cloaked in a somewhat ungainly, riveted shell. Fledgling industrial designer Raymond Loewy was given the important assignment of turning this proverbial ugly duckling into a swan.

The result was a shiny dark green carbody tricked out with five elegant gold pinstripes that plunged to vanishing points on the locomotive's shapely nose. Small red keystones provided discreet splashes of color. One hundred and thirty-nine GG1s were built.

By the 1970s the GG1s were aging though still able to outhaul anything in sight, their days were numbered. To provide a fitting finale, a group called "Friends of the GG1" restored one of Amtrak's "Gs" to its original pinstripe scheme. On May 15, 1977, GG1 No. 4935 was rededicated at Washington Union Station and put back into service.

Four years later, the Jersey Central Railway Historical Society and NJ Transit restored GG1 No. 4877 to glorious Loewy pinstripes-but in this case in Tuscan red (worn by a handful of Gs in the fifties). Like No. 4935, 4877 entered regular service and was on hand for the bittersweet ceremony on October 29, 1983, when the last active GG1 was retired from service on Transit's North Jersey Coast Line.


PRR's "E44" Electric Locomotives

Perhaps the last and most advanced freight electric locomotives to ever operate in the U.S. were built for the Pennsylvania Railroad by General Electric.

Dubbed E44s the electrics featured the latest technologies available and were quite efficient workhorses.

The E44s began arriving on the Pennsy in the late 1950s and eventually the motors wound up with three different owners after the Penn Central collapse of the 1970s handed them over to Conrail in 1976.

Conrail was never particularly interested in electric freight operations, especially after the North East Corridor was given to Amtrak upon the Penn Central's collapse during the 1970's. 

As a result, freight operators are charged high fees to use the line, which is largely kept clear for passenger service.  This decision remains bitterly opposed to this day as the corridor naturally is the best artery to transport freight between the Northeast's largest cities.  

In the modern era, freight trains are primarily relegated to overnight operation.   

For this reason, along with a number of other factors, Conrail gave up on electric operation in the mid-1980s.  Today, one E44 stands preserved, #4465 on display inside the Railroad Museum of Pennsylvania at Strasburg.

During Conrail's brief years of operating electrified freight service E44s, led by #4436, lead an eastbound/southbound consist along the Columbia & Port Deposit Branch near Safe Harbor, Pennsylvania during early November of 1977. Randy Kotuby photo.

The E44 freight electric locomotive was an Ignitron-rectifier built by GE in 1959 as the PRR needed a new freight locomotive to replace its aging fleet of P5s and supplement its GG1s (which by the late 1950s were used in both freight and passenger service).

The new E44s employed a C-C wheel arrangement and were capable of producing 4,400 hp (thus their name E44 Electric, 4400 hp).

In total the Pennsylvania would come to own a fleet of 66 E44s, that were quite similar to the Virginian’s EL-C rectifiers, later known as E33s, albeit a bit more powerful. 

Interestingly, the E44 model resembled the E33s for a very good reason, the PRR used the design as a template for its own freight motor.

By the time the Pennsylvania began testing them they had been purchased by the New York, New Haven & Hartford as the Virginian had been purchased by the Norfolk & Western who no longer saw a need from them (they soon after shutdown all of the Virginian's electrified operations).

Penn Central E44 #4461 and MU commuter cars layover at the ex-PRR Orangeville terminal/roundhouse in Baltimore, Maryland on August 9, 1970. This facility has since been abandoned. Roger Puta photo.

Still practically brand new the PRR was quite impressed with the E33s and contracted with General Electric to use the design as a basis for its own new model. 

From a technical standpoint the E44 used six GE Model 752 E5 traction motors. The primary difference, internally, of the E44 was its means of converting AC current to DC.

The first E44s the Pennsy received used Ignitron tubes to convert the current.

However, the last batch of locomotives used newer and less maintenance intensive, air-cooled silicon diode rectifiers. These upgraded locomotives were dubbed E44As to distinguish them from the original models.

Penn Central E44 #4446 hustles southbound past the station at Princeton Junction, New Jersey as a commuter train is stopped on the next track over during August of 1971. Roger Puta photo.

The model became the face of the Pennsylvania's late electrified operations prior to the transition to Penn Central in the late 1960s.

With such a large fleet the railroad used the E44s all over its electrified lines, particularly along the Northeast Corridor.

If you were lucky at the time you could occasionally even catch the freight locomotives in passenger services, used as needed, usually zooming along in commuter service despite the fact they were not really intended for use in such a capacity. 

Overall, the E44s proved to be quite reliable freight motors and while they were geared for speeds of up to 70 mph they usually operated somewhere below this threshold.

Extremely quiet in service, they effortlessly lugged freight trains down the line with relative ease.

The model was delivered to the Pennsylvania in a very standard all-black with the company's classic keystone logo in crimson red and yellow featuring the interconnected "PRR".

All 66 units were delivered between 1960 and 1963, which by that time was the railroad's final days as an independent carrier.

Too rigidly managed during times that called for change to survive in the industry, the PRR was out of money and running on borrowed time.

During early days, such as prior to World War II, the railroad would likely have purchased many more new electrics of various designs, notably for passenger service, instead of relying on its worn out fleet of GG1s.

A trio of Penn Central E44's are under the train shed at Harrisburg, Pennsylvania on May 18, 1969. Roger Puta photo.

In any event, after the collapse of the Penn Central in 1970 and the creation of Conrail in the spring of 1976 the locomotives were used sporadically until 1981 when most were stored at the PRR’s old Enola Yard.

By the mid-1980s all had been sold by Conrail, interestingly two buyers of which were Amtrak and NJ Transit, which intended to use them in passenger service.

Conrail E-44 #4414 runs light between assignments near Wormleysburg, Pennsylvania during the fall of 1978. Randy Kotuby photo.

Dissatisfied with their performance both passenger carriers elected to sell them either outright or for scrap.

Unfortunately, the E44 was similar to late model steam locomotives that despite being well conceived and designed, was retired well too early.

The youngest units were barely 20 years of age before being parked. Today, at last one E44 has been preserved at the Railroad Museum of Pennsylvania near Strasburg.


Locomotives - History

Between 1875 and 1878, Charles Darwin Scott , a lumberman of considerable mechanical ingenuity, operated a logging tram road with a home made locomotive to handle logs to the Scott and Akin mill at Spartansburg, nine miles from Corry, Pennsylvania. Scott’s experiments with his home made locomotive lead to his invention of the Climax locomotive.

Scott decided to place his locomotive on the market and took his plans to the Climax Manufacturing Company in Corry to have the locomotive built. The first known Climax was out-shopped in March 1888 and was sold to the firm of Imel, Powers and Shank . Three more were built and sold within the next three months. A patent was applied for on February 10, 1888 and granted December 4, 1888, however, the patent was issued to George D. Gilbert instead of Scott.

George D. Gilbert was a relative of Scott by marriage was well educated and a civil engineer by trade. He had also been involved in the manufacture of portable steam engines. Scott had only a limited education and had agreed to let Gilbert draw the plans and handle the procedures of applying for the patent. However, Gilbert did not credit the invention in Scott’s name.

When new patents were taken out for design improvements by R. S. Battles of the Climax Manufacturing Company, Scott was again ignored. Scott filed suit against both Gilbert and Battles and applied for a patent in his own name. After a lengthy court battle a verdict was rendered in Scott’s favor and he was granted a patent on December 20, 1892. However, the lawsuit left him penniless and he never reaped much benefit from his invention and since the Climax name was applied to the locomotive, Charles D. Scott has been virtually forgotten. George D. Gilbert is still incorrectly credited as being the designer of the Climax in many publications and on some Web pages.

Climax Development

The first Climax Locomotives built were very crude in appearance and bore little resemblance to conventional locomotives. A vertical boiler and two cylinder marine type engine was mounted on top of a platform frame, supported by a four wheel truck at each end. A round water tank was placed on one end and a fuel bin on the other. Power was transmitted to the axles by gears with a differential arrangement similar to the modern automobile, and driven by a line shaft connected to the engine through a two speed gear box. The frame, canopy type cab, and even the truck frames were made of wood.

The idea of the differential gears was to reduce the resistance on sharp curves by allowing one wheel to be idle or revolve at less revolutions than the one on the opposite end of the axle. Several locomotives were built to this design, but it was soon found to be objectionable in that it reduced the pulling power when negotiating sharp curves, especially on steep grades. This truck design was known as the “loose wheel arrangement”.

The first Climax locomotive weighed ten tons in working order, and was soon increased to fifteen tons. It also set the pattern for the Class A type, which became so popular and was built until the plant went out of business.

The Class A Climax

The trucks were redesigned to eliminate the differential gears and bevel skew gears were substituted, with the wheels pressed tight on the axles. This was known as the “tight wheel arrangement”. At the same time the truck frames were redesigned to a steel arch bar type with individual springs over each journal bearing, which allowed the axles to move up and down on rough track.

The most outstanding feature of the Class A Climax was the two speed gear arrangement connecting the engine to the longitudinal line shaft which in turn connected with the axles, centered between the wheels. These gears had two speeds, high and low, which could be shifted at will by the engineer in the cab. The low speed was a decided advantage when a heavy train had to be started on a grade, or when climbing a steep grade. The low speed gear ratio was 9:1 providing 13,200 pounds tractive effort and the high gear ratio was 4.5:1 resulting in 6,600 pounds tractive effort. They also had a neutral position which could be used to allow the locomotive to roll freely down grade by gravity. However, this was not recommended on steep grades.

A second feature was the simplicity of design which made it possible to build the Class A and sell it at a cheap price. This also made the locomotive easy and cheap to maintain and operate. Woodsmen called it many names such as “Box Car Engine” because it resembled a box car, but a better term might be the “Poor Mans Engine”. The Class A Climax was well liked by the crews because of its large roomy cab, which gave all the crew members a place to ride, out of the cold, wet weather.

The Class A locomotive had an operating speed of six to ten miles per hour depending on which gear was used. This was slower than the larger Class B and C Climax and other makes of geared locomotives, but was ideal on poor track. All three classes of Climax Locomotives used the same type of trucks. The design used on the Climax truck was the most flexible ever used on any geared locomotive and the center drive allowed them to swivel freely and negotiate the sharpest of curves. The line shafts crossed the axles in the center and were held in place by cross boxes and bearings. This arrangement, plus the springs over each journal bearing, would allow the axles to move up and down on rough track without the slightest binding of the gears which always remained in perfect mesh.

The Class A locomotives were always small and were standardized in twelve, fifteen, eighteen and twenty-two tons sizes. Its combination of low speed and flexible trucks with its light weight, allowed it to run on the lightest rail and rough poorly constructed track with ease and haul a heavy load. In comparison with its weight, it was a very powerful little engine.

Class A Variations

The appearance and appliances of individual Class A locomotives varied considerably. The original open frame canopy style cab was often modified by the owner and was later changed to an enclosed cab by the manufacturer. A few were built with cabs that completely enclosed the locomotive. Larger capacity square water tanks could be ordered and in fact became the standard in the last years of production. Headlights could be any number and mounted in various locations. Bells were rare, but were applied in several instances. The spark arrestors varied from a simple wire screen cage fastened on the top of the stack, to a distinctive Climax style diamond stack. Quite a few Class A locomotives had no spark arrestor at all.

The Class A Climax was constantly improved over the years and the vertical boiler was eliminated. It was first replaced with a round fire box tee shaped boiler, then a square fire box tee boiler, followed later by a taper shell type boiler and finally a larger straight shell type. In 1911, the main frame was redesigned with steel and offered as an option. After it became available, only a limited number were built with wood frames. In 1916, the round water tank was replaced by a larger square water tank.

Wheels were available on the Climax locomotive for all applications. There was a wheel cast with grooves or cleats running across the tread and a deep flange for better traction on wood rail.

There were wheels designed for use on a combination of wood and steel rails concave shaped wheels with double flanges for use on track built from poles and conventional steel tired wheels.

Climax Locomotives were built for track gauges ranging from 24 inches built for a Midwest contractor, up to 9 feet for a Class A locomotive built to operate on a Pole Road in Mississippi.

A small type A Climax was also designed which weighed seven to eight tons. It was basically like the larger engines except that it only had two axles and four driving wheels and did not have the speed gear shift. About four of them were built, but they did not prove successful because of being too light for most logging railroad operations.

The Climax was eminently successful from the very beginning. After the first engine was built, approximately forty locomotives were out-shopped during the next three and a half years. However, there was an increasing demand for larger logging locomotives and it became necessary for Climax to design larger engines. While the Class A was very practical, the nature of its design was not suited for larger locomotives.

The Class B Climax

A larger Climax was designed with a horizontal boiler and with the cylinders arranged in a horizontal position. It also retained the proven Climax truck design, gear train and the two speed gear shift feature. The new engine weighed twenty-eight tons, was designated Class B and resembled the conventional steam locomotive.

The first locomotive of this type (S/N 81) was out-shopped in January, 1891 and was sold to Smith, Glover, and Duncan . A second engine was completed in February, 1891 and shipped to North Carolina. A few others were built, but the design did not prove successful. The chief fault was that too many gears and other working parts were necessary to incorporate the two speed gear shift feature. While the gear shift feature was a desirable and simple arrangement in the Class A, it was too complicated when adapted to the horizontal type engines.

A new Class B Climax was designed which eliminated the gear shift feature and changed the position of the cylinders to an approximate elevation of twenty-five degrees. The first locomotive of this design was built in 1893 and weighed twenty-five tons. It proved an instant success and was the beginning of the long line of Class B locomotives that proved so popular as long as the Climax locomotive was manufactured.

Soon after the first Class B was built, Climax designed and offered their locomotives in several sizes from seventeen to fifty tons. The small seventeen and twenty ton sizes had a tee shaped boiler with a round fire box, which in a few years was changed to a square fire box. The larger sizes used a straight shell boiler for many years, then was changed to a taper shell wagon top boiler. Eventually the Class B was built in sizes ranging from seventeen to sixty-two tons.

The Class C Climax

The first Class C Climax built with three trucks and twelve drivers, was completed in 1897 and shipped to the Colorado and Northwestern Railroad . It was 36 inch gauge and weighed fifty tons. The three truck Climax gradually increased in weight to sixty and sixty-five tons and then to seventy-five and eighty-five tons. Eventually it became standardized in weights from seventy to one hundred tons.

From the beginning, Climax gradually improved their locomotives and added more sizes, which they continued to do as long as the locomotives were manufactured. Eventually the Climax Locomotives were offered in seventeen sizes, in weights from twelve to one-hundred tons.

In 1910, Climax reclassified the sizes of the locomotives to conform with new improvements being made. At this time all straight shell boilers were replaced with taper shell, wagon top type boilers except the Class A and twenty ton Class B engines. Until this time all cabs were of wood, but now, steel cabs were offered as an option. They became so popular that wood cabs were seldom used after this date except on the Class A, that was always built with a wood cab.

Until 1915, all Climax Locomotives used the Stephenson valve gear. At this time it was replaced by the Walschaert valve gear on all sizes of forty-five tons and larger. This proved to be a decided improvement and had the advantage of all the working parts being on the outside of the locomotive and easy to maintain. The Walschaert valve gear was also less likely to get out of adjustment and had less wearing of the working parts, resulting in less maintenance.

In 1922, Climax designed a one-hundred ton, three truck locomotive, which was out-shopped in July, 1923. At the same time, the sixty ton Class B and all Class C locomotives were upgraded with many new features. The main frames were strengthened and many large castings formerly made of cast iron, were now cast from steel. Piston valves replaced the old slide valves and superheaters were added as an optional feature.

Again in 1925 more improvements were made. The main frame was again strengthened by a girder type frame which eliminated truss rods. The engine frames were redesigned with alligator type cross heads, and cast from steel. Cast steel truck frames replaced the arch bar type frames. All weather vestibule cabs replaced the open cabs on all Class C locomotives. This was the first of the improved geared engines offered to the lumbermen and preceded the West Coast Special Heisler and the Pacific Coast Shay by several years.

Climax Production

Climax also built a line of logging cars for many years. Many orders for a locomotive often included several logging cars. Before they began building locomotives, the company had long been engaged in the manufacture of mowers and reapers, stationary steam engines, oil well equipment and other products. However, locomotive production soon reached the point that it taxed the capacity of the plant and all other products were dropped.

During a period of over forty years, Climax built between 1,030 and 1,060 locomotives. They were widely distributed and popular in the lumbering regions throughout the United States and Canada. Many were also exported to foreign countries. They were also much used on mining, industrial switching, plantations, brick yards, short lines and many other specialized railroad uses.

It is difficult to accurately determine the total number of locomotives constructed by Climax due to the assignment of shop numbers and the lack of complete shop records. The assignment of shop numbers was unique, to say the least. Numbers from 1 to 250 or 300 were assigned consecutively. From 250 or 300 through 499, only the odd numbers were used and from 500 through 1000 only even numbers were used. Between 1001 and about 1585 only odd numbers were used, and from 1586 through 1694 all numbers were used except for a few around 1690. 1694 was the highest shop number ever used.

Sometime after 1900 the use of numerical order was discontinued. A batch of builders plates would be cast at one time and placed in a bin. When a locomotive was ready for the builders plates, or plate in the case of the Class A, the first single or matching pair found would be placed on the locomotive. Sometimes plates would be placed on a locomotive boiler on which production was delayed for an extended time or which was built for stock and not sold immediately. This would result in locomotives that appear to be “early” production models often being delivered after “later” production models.

End Of An Era

During the latter half of the 1920’s, the demand for new geared logging locomotives had shrunk to a small portion of what it had been in former years. At this time the owners of the Climax plant were well advanced in years. This and the limited sale of new locomotives induced the owners to sell the business in September, 1928, to the General Parts Corporation . This company had been engaged in purchasing defunct automobile companies and providing a repair parts service. This was also their reason for acquiring the Climax business and they had no intention of continuing to manufacture the locomotive. The only new locomotives they sold after acquiring the plant were two engines completed for stock and four others under construction, which they completed and sold. Others under construction which were partially completed were dismantled for their parts.

General Parts Corporation continued the repair parts service for several years. Later the plant buildings and machinery were sold to others and part of the plant was torn down to make way for a new building to manufacture war material during the Second World War.

Historical Clarifications

Over the years, many inaccuracies about the Climax locomotive have been published in books and articles pertaining to both logging railroads and geared locomotives. These inaccuracies are often the result of over-enthusiastic rail-fans - intrigued by the design of the Shay locomotive - rather than in mechanical design and performance. For example - because of the drive-line arrangement of the Shay, the trucks where sprung on only one side - and thus were prone to derail on the rougher track of the smaller logging operations whereas the Climax and Heisler locomotives with their fully sprung trucks, could handle the roughest track without derailing or loosing tractive effort.

It has often been stated that the Climax was invented as an attempt to improve upon the Shay locomotive. This was hardly the case as development of both locomotives occurred during roughly the same time frame and at locations hundreds of miles apart. It is doubtful that either inventor knew of the others work until after both locomotives were placed on the market.

Experiments by Ephraim Shay and Charles Scott quickly lead both men to realize that a successful logging locomotive had to be as flexible as a loaded log car. However Shay’s design was built to fit existing parts from a wrecked barge, resulting in its odd offset design, while Scott’s locomotive was designed from the rail up to have an even centered power distribution.

An often quoted misconception about the Class B and C Climax Locomotives is that the flywheels that transmitted power to the line shafts resulted in a vibration that would actually cause damage to the locomotive.

The larger Class C locomotives with their larger and heavier parts did create a problem for counterbalancing for more than one speed of the locomotive and resulted in vibration of the crankshaft. The shake was not materially transmitted to the trucks because of their extensive springing and so proved far more uncomfortable than dangerous or damaging. Improvements to the Class C Climax in 1928, virtually eliminated this vibration.

The lesser weight of the parts on the smaller locomotives did not create the centrifugal forces that arose on the large engines so that their counterbalancing was not difficult and the vibration was never a problem for these locomotives.

Another misconception often perpetuated by the authors of these publications is that the Climax locomotive was not as popular as the Shay or other geared locomotives because of the number produced and/or that the Climax was somehow inferior to the competition. In reality, the Climax was extremely popular.

There are numerous documented statements by both lumbermen and locomotive engineers, that attest to the popularity of the Climax locomotive and its ability to perform its intended job. In many instances, where companies operated Climax Locomotives along with the other types of geared locomotives, the Climax was usually the preferred locomotive, especially on the smaller operations with their inherently rough track.

In fact, it has been documented that when a Climax and Shay locomotive of approximately the same size and operating weight were used on a logging railroad, the Climax could always handle more tonnage over the same grades than the Shay.

A typical example of the power and tracking qualities of the Climax versus the Shay on many of the smaller logging railroad operations is that of the Whitmer-Steele Company at Clearfield, Pennsylvania. This operation was started in 1912 with a single 25 ton Class B Climax, No. 2, S/N 155 built in 1896. To supplement its operations, the company purchased a new 24 ton Shay locomotive, No. 5, S/N 2629 built in 1912. The new Shay did not perform as expected.

William Wilson , an employee of Whitmer-Steele related his experiences with the Shay:

“The men were elated when they found they were getting a new locomotive. The No. 2, by now 16 years old, was placed in the engine house as a spare. The engineer for the first trip with the new Shay was Charles Hoffman. The crew was promptly dismayed by the locomotive leaving the rail within a short distance. Thinking little of this, other than it might be expected of a new locomotive, the crew managed to re-rail the engine and got the train to the loading area, but their troubles were far from over.”

“Leaving the valley of Lick Run to climb the Mt. Joy Ridge, it became evident that the locomotive did not have sufficient power to bring the train over the grade. Cutting the train in half, it was then possible to get the train over the hill. But this meant double work for the crew, for they had to return for the other half. Climax No. 2, could handle the same train without doubling the hill.”

“As time passed, the situation, if anything, became worse. The crews spent much of their time re-railing the engine and doubling the hills. What had been the pride of the railroad, soon was put in the engine house and replaced by Climax No. 2.”

Climax No. 2 saw a total of 47 years of service, ending its career at Cornwall, Virginia in 1942. The 24 ton Shay, No. 5, was the only locomotive ever purchased new by Whitmer-Steele and the only Shay ever used by the company.


Assista o vídeo: Curta-metragem O dia em que Dorival encarou a guarda 1986 Legendado